Wavelet Robust Control by Fuzzy Boundary Layer via Time-variant Sliding Surface

نویسندگان

  • Majid Yarahmadi
  • Seyed Mehdi Karbassi
  • Ahmad Mirzaei
چکیده

There are several techniques to control of an uncertain nonlinear system. A typical approach is sliding mode control technique [14]. In the sliding mode technique, the proper transformation of tracking errors to generalize errors is introduced, so that n order tracking problem can be transformed into an equivalent first order stabilization problem [16]. The sliding-mode control employs a discontinuous control to derive the system state to reach and maintain its motion on sliding surface. The discontinuity in the control action provides the chattering and the un-modeled frequencies may be activated, which are undesirable in application. To avoid these drawbacks, the boundary layer technique is exploited [14]. For achieving the better tracking performance a varying boundary layer is considered. In [9], the selftuning laws based on the bounded modeling error, for adjusting the boundary layer width and the other parameters have also been proposed. Furthermore, for calculating the control gain parameter, the difference functions f  and g  must be obtained, that is a drawback. The auto-tuning neurons computation for designing the sliding-mode control [3] and the fuzzy adjusting method for finding the suitable boundary layer width [12] are used. Most practical systems are non-linear and complex in nature with uncertain dynamics that may not be easily modeled mathematically. For this purpose, the identification methods are usually exploited [1], [2], [11], [17]. A direct adaptive fuzzy sliding mode control for uncertain nonlinear systems was presented in [13]. The GA-based fuzzy sliding mode controller with modified adaptive laws for robust control of an uncertain nonlinear plant has also been presented [4]. Recently, wavelets have led to advanced tools in many scientific and application research areas [5]. Multiscale analysis, synthesis properties and the learning abilities of neural wavelet networks, for approximation of nonlinear functions are well established [6], [15], [18]. In the literature only time-invariant sliding surface has been studied extensively. Here for the first time, a new case of time-variant sliding equation is presented. For this purpose, the rejection regulator based on a parameter that is called "rejection parameter" is defined. For objectively choosing the coefficients of error states in sliding equation rejection regulator is used. By tuning the rejection parameter, we can adjust the break frequency bandwidth and also the coefficients of error states in sliding equation. Such sliding equation, as a chain of ) 1 (  n adaptive first-order low-pass filters, rejects all un-modeled frequencies. The tracking precision is not guaranteed by using the saturation function. Therefore, instead of Wavelet Robust Control by Fuzzy Boundary Layer via Time-variant Sliding Surface

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the s...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Energy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller

This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...

متن کامل

Second Order Sliding Mode Control With Finite Time Convergence

In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...

متن کامل

A New Fuzzy Sliding Mode Controller with Auto-Adjustable Saturation Boundary Layers Implemented on Vehicle Suspension

This study develops a fuzzy sliding mode controller (FSMC) based on a variable boundary layer. A fuzzy inference mechanism is used to on-line tune the thickness of the boundary layers of the controller. Minimum rule base has been used for the fuzzy inference system which results in low calculation effort. The aim of this paper is to design a controller which will eliminate the chattering of FSM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017